If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-60=0
a = 7; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·7·(-60)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*7}=\frac{0-4\sqrt{105}}{14} =-\frac{4\sqrt{105}}{14} =-\frac{2\sqrt{105}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*7}=\frac{0+4\sqrt{105}}{14} =\frac{4\sqrt{105}}{14} =\frac{2\sqrt{105}}{7} $
| X+y=1/5 | | H(t)=-16t^2+140t+5 | | Z+w=1/5 | | x+(7-x)-5=0 | | 9000^2-6000x-15000=0 | | 44x+36=532 | | 24x+9=33 | | 18w^2-24w-8=0 | | 32(3x)-33(5)=32(7) | | C=190.00+0.15x | | 2x+x/2=35 | | 29=3^x | | 46.2x10^-2=x | | C=38.28+0.50x | | 10x-4=8x-10 | | (4x+30)=52 | | (7x-5)^2=-2 | | 7(7x+9)=49x-8 | | 9m=10-14m+-5 | | M/3+2m/5=1/5 | | 3x-2=49+16 | | 7n=12+82 | | 14(x-12)=42 | | X^2-14/2x=-5/2x | | 51+13x=90 | | 5x+2=3×+8 | | 2^2+5x-2=-1x^2 | | 3x+10=70-2x | | 3.4x-16.72=6.4 | | 12x-28=63+7 | | -6(3b+4)+(19b-4)=0 | | 0.007x−0.07=0.7 |